
ECON 897 Test (Week 3)
July 31, 2015

Important: This is a closed-book test. No books or lecture notes are permitted. You have

120 minutes to complete the test. Answer all questions. You can use all the results covered in

class, but please make sure the conditions are satisfied. Write your name on each blue book and

label each question clearly. Write legibly. Good luck!

1. (20 points) Let f : R −→ R be twice differentiable. Suppose there exists ε > 0 such that

f ′′(x) > ε for all x ∈ R. Show that f ′(x) = 0 for some x ∈ R.

Proof. Assume f ′(x0) > 0 for some x0 ∈ R. Since f is twice differentiable⇒ f ′ is differentiable

so, by the Mean Value Theorem,

f ′(x0 + h) = f ′(x0) + f ′′(ζ)h, ζ ∈ (x0, x0 + h)

Note that for h < 0, f ′′(ζ) > ε implies that f ′′(ζ)h < εh. Thus,

f ′(x0 + h) = f ′(x0) + f ′′(ζ)h < f ′(x0) + εh, h < 0

Taking h an arbitrarily large negative number, (h < −f ′(x0)
ε < 0 ), the above inequality

implies that f ′(x0 + h) < 0.

So, take h0 < −f ′(x0)
ε . We have then that f ′(x0) > 0 and f ′(x0+h0) < 0. By the Intermediate

Value Theorem, there must exist an x1 ∈ (x0 + h0, x0) such that f ′(x1) = 0.

2. (20 points) Let f : R −→ R be twice continuously differentiable. Assume there is a c ∈ (a, b)

such that f ′(c) = 0 and f ′′(c) < 0. Show that f has a local maximum at c.

Proof. Let c ∈ (a, b) such that f ′(c) = 0. Since f is twice differentiable, lets do a Taylor

expansion of second order around the point c:

f(x) = f(c) + f ′(c)(x− c) +
f ′′(ζ)

2
(x− c)2, ζ ∈ (x, c)

Since f ′′ is continuous, there must exist a neighborhood (c− δ, c+ δ) such that f ′′(x) < 0, for

all x ∈ (c− δ, c+ δ). Therefore, for all x ∈ (c− δ, c+ δ):
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f(x) = f(c) + f ′(c)︸︷︷︸
=0

(x− c) +

<0︷ ︸︸ ︷
f ′′(ζ)

2
(x− c)2, ζ ∈ (x, c)

⇔ f(x) < f(c), x ∈ (c− δ, c+ δ)

Therefore, c is a local maximum.

3. (20 points) Suppose that f : (a, b) −→ R is differentiable and f ′ is bounded. If {xn} is a

sequence on (a, b) and xn −→ a, then f(xn) converges.

Proof. Note that f is not defined at the point a!

f ′ is bounded, which means that supx∈(a,b) |f ′(x)| < M , for some M ∈ R. By the Mean Value

Theorem, for x, y ∈ (a, b),

f(x)− f(y) = f ′(ζ)(x− y), ζ ∈ (x, y)

In particular,

|f(xn)− f(xm)| = |f ′(ζ)||xn − xm| ≤M |xn − xm|, ζ ∈ (xn, xm), n,m ∈ Z

Since, {xn} is a convergent sequence in R, it is a Cauchy sequence, so for every ε > 0 we can

always find N ∈ Z such that ∀n,m ≥ N , |xn − xm| < ε. Thus, let ε/M > 0. There exists

N ∈ Z such that:

|f(xn)− f(xm)| ≤M |xn − xm| < M · ε
M

= ε, ∀n,m ≥ N

This means that {f(xn)} is a Cauchy sequence in R, which is a complete metric space. Thus,

{f(xn)} must converge.

4. (20 points) State whether the following are linear subspaces, and prove your answer:

(a) Let Wn = {f(x) ∈ P (F )|f(x) = 0 or f(x) has degree exactly equal to n > 1}. Is Wn a

subspace of P (F ), where P (F ) is the space of polynomials?
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Proof. It is not a subspace:

Take two polynomials of degree n with the same leading coefficient and subtract them.

The resulting polynomial has degree n − 1, so Wn is not closed under addition. For

example, take:

xn + an−1x
n−1 + . . .+ a1x+ a0 ∈Wn

xn + bn−1x
n−1 + . . .+ b1x+ b0 ∈Wn

Subtracting them, it is clear that

(an−1 − bn−1)xn−1 + . . .+ (a1 − b1)x+ (a0 − b0) /∈Wn

(b) Let A = {(a1, a2, a3) ∈ R3|a1 = a3 + 2}. Is A a subspace of R3?

Proof. It is not a subspace:

It is not closed under addition. Take (3, 0, 1) ∈ A and (5, 0, 3) ∈ A. Clearly, (3, 0, 1) +

(5, 0, 3) = (8, 0, 4) /∈ A.

5. (20 points) Let A ∈ Mn×n, such that A−1 exists. Prove that the columns of A form a basis

for Rn.

Proof. A has an inverse, A−1, so AA−1 = I. Let:

A−1 =


b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...

bn1 bn2 . . . bnn


And write A as an n−tuple of its column vectors: A = (a1, . . . , an).

Then,

A


b1i

b2i
...

bni

 = b1ia1 + . . .+ bnian = ei
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Which means that ei ∈ span{a1, . . . , an}, for all i ∈ {1, . . . , n}. Therefore, the columns of A

span Rn and, since they are n vectors, they are a basis for Rn.

For the following problem, you cannot use the results in the exercises:

6. (20 points) If a is an n× 1 vector, and b is a 1×m vector, prove that ab is an n×m matrix

of rank at most equal to one.

Proof. The proof is the same as that of exercise 4 of July 29.
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